Tip-enhanced Raman spectroscopy of graphene-like and graphitic platelets on ultraflat gold nanoplates.
نویسندگان
چکیده
In this study, tip-enhanced Raman spectroscopy (TERS) is used to characterize graphene-like and graphitic platelets composed of a few layers of graphene. Specifically, gap-mode TERS geometry provides a larger enhancement of the local electromagnetic field at the junction formed by a gold sharp tip and a gold substrate. Graphene-like platelets are deposited onto ultra-flat thin gold nanoplates using a surfactant-assisted method. Au-coated atomic force microscopy (AFM) tips are used to probe specific substrate regions coated by the platelets. TERS spectra are collected on distinctive points on the graphene-like layers and surrounding substrate using radially or linearly polarized light, with an excitation wavelength of 632.8 nm. The position, width and intensity of G, D, and 2D Raman-active modes of graphene are discussed as a function of the incident light polarization and for distinct positions on the graphene layer. We report here on the nature of the collected TERS spectra focusing in particular on the edges of the graphene platelets.
منابع مشابه
A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth
We describe a simple method for decorating graphene (1–5 layers) with Au and Ag nanostructures (nanoparticles, nanorods, and nanoplates). We deposit graphene electrostatically from highly-oriented pyrolytic graphite onto Si/SiO2 surfaces functionalized with (aminopropyl)trimethoxysilane and grow the metal nanostructures by a seed-mediated growth method from hexanethiolate-coated Au monolayer-pr...
متن کاملBimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.
It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold ...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملMicrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS).
In this report, we propose a novel starch-mediated photochemical reduction method for synthesizing micrometer-sized gold nanoplates and the possibility of using them as a tip-enhanced Raman scattering (TERS) substrate. To reduce gold ions, a starch chain firstly forms a complex with AuCl(4)(-), and the gold ion is subsequently reduced by receiving an electron from a chloride ion and generating ...
متن کاملSilver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy.
Silver nanoplates were prepared by modified galvanic displacement on commercial copper foil. SEM, TEM, UV-vis and XPS were employed to analyze those closely packed silver nanoplates. This type of surface-enhanced Raman spectroscopy substrates showed strong surface plasmon absorption and reliable surface-enhanced Raman activity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 33 شماره
صفحات -
تاریخ انتشار 2015